

SLIATE

SRI LANKA INSTITUTE OF ADVANCED TECHNOLOGICAL EDUCATION

(Established in the Ministry of Higher Education, vide in Act No. 29 of 1995)

Higher National Diploma in Engineering (Electrical/Mechanical/Building Services) Second Year, Second Semester Examination – 2016 MA 2204 / BSE 2207 – Advanced Engineering Mathematics

Instructions for Candidates:

No. of questions: 5

Answer any four (4) questions.

No. of pages : 2

All questions carry equal marks.

Time

: two (2) hours

1. i). Find the function of z of $\frac{\partial^2 z}{\partial x \partial y} = \sin x \sin y$ at the conditions of $\frac{\partial z}{\partial y} = -2 \sin y$ and z = 0 when x = 0.

[15 marks]

ii). Consider the wave equation given below.

$$\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2}$$
, where c is a constant.

Show that the one solution of this equation can be given as $y(x,t) = \cos t \cdot \sin x$.

[10 marks]

[Total 25 marks]

- 2. f(x) is a function of period 2π such that f(x) = x+1 for $0 < x < \pi$.
 - i). Sketch the graph of f(x) according to the cosine series in the interval of $-3\pi < x < 3\pi$.

[5 marks]

ii). Find the Fourier cosine series for the function of f(x).

[10 marks]

iii). By substituting suitable values of x, prove that

$$1 + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}$$

[10 marks]

[Total 25 marks]

- 3. a). Find the Laplace transforms of the following.
 - i). $3t^2 \cos 2t$
 - ii). $e^{-2t} \sin 2t \cos 3t$
 - iii). t cos 3t

[15 marks]

- b). Find the inverse Laplace transforms of the following.
 - i). $\frac{2s^2-3s+4}{s(s-1)(s-2)}$
 - ii). $\frac{1}{(s+2)^4}$

[10 marks]

[Total Marks 25]

4. a). Solve the following differential equation by using Laplace transform method.

$$2y'' + 5y' + 2y = e^{-2t}$$
, initial conditions are y (0)=1 and y'(0)=1.

[10 marks]

- b). Find the Z transform of the following.
 - i). $\frac{1}{2}^k$, where $k \ge 0$
 - ii). 3k+2, where $-1 \ge k \ge 3$

[10 marks]

c). Find the inverse Z transform of $\frac{1}{(z-3)(z-2)}$, where |Z| < 2

[05 marks]

[Total Marks 25]

- 5. Bessel function is given as $J_n(x) = \frac{x^n}{2} \sum_{k=0}^{\infty} \frac{(-x^2/4)^k}{k!(k+n)!}$
 - i). Find $J_2(2)$, $J_1'(2)$, $J_2'(2)$ in terms of a and b.

where
$$J_0(2) = a \text{ and } J_1(2) = b$$

[15 marks]

ii). Prove that $4J_n''(x) = J_{n-2}(x) - 2J_n(x) + J_{n+2}(x)$.

[10 marks]

[Total Marks 25]

<u>Table I</u> Standard Laplace-Transforms			1141101011110
f(t)	£ {f(t)}	f(t)	$\mathcal{L}\left\{ \mathbf{f}(\mathbf{t})\right\}$
1	$\frac{1}{s}$	sinh ωt	$\frac{\omega}{s^2 - \omega^2}$
k	k s	cosh ωt	$\frac{s}{s^2 - \omega^2}$
e ^{at}	$\frac{1}{s-a}$	e ^{at} sin ωt	$\frac{\omega}{(s-a)^2+\omega^2}$
sinωt	$\frac{\omega}{s^2 + \omega^2}$	e ^{at} cos wt	$\frac{s-a}{(s-a)^2+\omega^2}$
cosωt	$\frac{s}{s^2 + \omega^2}$	e ^{at} sinh ωt	$\frac{\omega}{(s-a)^2-\omega^2}$
t	$\frac{1}{s^2}$	e ^{at} cosh ωt	$\frac{s-a}{(s-a)^2-\omega^2}$
t t2	$\frac{2!}{s^3}$	y(t)	Y(s)
t ⁿ	$\frac{n!}{S^{n+1}}$	$\frac{\mathrm{d} \mathrm{y}}{\mathrm{d} \mathrm{t}}$	sY(s) - y(0)
e ^{at} t ⁿ	$\frac{n!}{(s-a)^{n+1}}$	$\frac{\mathrm{d}^2 y}{\mathrm{d} t^2}$	$s^2Y(s) - sy(0) - y'(0)$